
Dynamic Programming
Modan



What is DP?
● Dynamic programming?

● Recursion?

● The hardest of the 4 common 

problem solving paradigms?

● The easiest of the 4 common 

problem solving paradigms?



Problem



DAG Paths



Given a directed acyclic graph, a 
start vertex and an end vertex, 
how many ways are there to go 
from start to end?



Definitions
A directed acyclic graph (DAG) is a directed graph with no cycles.



Definitions
Example: 

I pulled this image from 

https://www.quora.com/What-is-a-DAG-Directed-Acyclic-Graph Please do not sue me.

https://www.quora.com/What-is-a-DAG-Directed-Acyclic-Graph


Definitions
Example: Is this a DAG?

This is from https://commons.wikimedia.org/wiki/File:Directed_graph,_cyclic.svg 

Please do not sue me.

https://commons.wikimedia.org/wiki/File:Directed_graph,_cyclic.svg


Definitions
Example: Is this a DAG? no!

This is from https://commons.wikimedia.org/wiki/File:Directed_graph,_cyclic.svg 

Please do not sue me.

https://commons.wikimedia.org/wiki/File:Directed_graph,_cyclic.svg


Definitions
A path in a graph is a list of vertices (v0,v1,...,vk) such that there is an edge from every 

vi to every vi+1.



Definitions
A path in a graph is a list of vertices (v0,v1,...,vk) such that there is an edge from every 

vi to every vi+1.

Is this a path? [A,B,E,F]



Definitions
A path in a graph is a list of vertices (v0,v1,...,vk) such that there is an edge from every 

vi to every vi+1.

Is this a path? [A,B,E,F] yes!

Is this a path? [A,B,D,E,F]



Definitions
A path in a graph is a list of vertices (v0,v1,...,vk) such that there is an edge from every 

vi to every vi+1.

Is this a path? [A,B,E,F] yes!

Is this a path? [A,B,D,E,F] yes!

Is this a path? [A,B,D,G]



Definitions
A path in a graph is a list of vertices (v0,v1,...,vk) such that there is an edge from every 

vi to every vi+1.

Is this a path? [A,B,E,F] yes!

Is this a path? [A,B,D,E,F] yes!

Is this a path? [A,B,D,G] no!



Definitions
Two paths are different if and only if the list of vertices are different.



Definitions
Two paths are different if and only if the list of vertices are different.

Are these path the same? [A,B,D,E] vs [A,B,C,E]



Definitions
Two paths are different if and only if the list of vertices are different.

Are these path the same? [A,B,D,E] vs [A,B,C,E] no!



Problem Definition
Given a directed acyclic graph, a start vertex and an end vertex, how many unique 

paths are there from start to end?



Problem Definition
Given a directed acyclic graph, a start vertex and an end vertex, how many unique 

paths are there from start to end?

How many unique paths are there starting at A and ending at E?



Problem Definition
Given a directed acyclic graph, a start vertex and an end vertex, how many unique 

paths are there from start to end?

How many unique paths are there starting at A and ending at E? 3!



Problem Definition
How many unique paths are there starting at G and ending at F?



Problem Definition
How many unique paths are there starting at G and ending at F? 1!



Problem Definition
How many unique paths are there starting at G and ending at B?



Problem Definition
How many unique paths are there starting at G and ending at B? 0!



Solution? ● Brute force?

● Try every path?



Complexity? ● How many paths are there in 

total?



Complexity? ● Can easily construct a case where 

there are O(2^V) paths!





O(2^V) in the worst case?
Can we do better?



Recurrence Relation
How many unique paths are there starting at A and ending at F?



Recurrence Relation
How many unique paths are there starting at A and ending at F?

Suppose Modan, the ultimate Recurrence Master, tells you, he’s 100% certain there are 

3 unique paths from A to E. Does this help you solve the problem?



Recurrence Relation
How many unique paths are there starting at A and ending at F?

Suppose Modan, the ultimate Recurrence Master, tells you, he’s 100% certain there are 

3 unique paths from A to E. Does this help you solve the problem?

It is now easy to conclude there are 3 unique paths from A to F!



Recurrence Relation
How many unique paths are there starting at A and ending at F?

Suppose Modan, the ultimate Recurrence Master, tells you, he’s 100% certain there are 

3 unique paths from A to E. Does this help you solve the problem?

It is now easy to conclude there are 3 unique paths from A to F!

Why?



Recurrence Relation
How many unique paths are there starting at A and ending at F?

Suppose Modan, the ultimate Recurrence Master, tells you, he’s 100% certain there are 

3 unique paths from A to E. Does this help you solve the problem?

It is now easy to conclude there are 3 unique paths from A to F!

Why?

The only way to get to F is from E.



Recurrence Relation
Let f(X) be a function where X is a vertex. f(X) = Y if and only if there are Y unique 

paths from S to X. Compute f(T) to get the answer!



Recurrence Relation
Let f(X) be a function where X is a vertex. f(X) = Y if and only if there are Y unique 

paths from S to X. Compute f(T) to get the answer!

We just concluded f(F) = f(E).



Recurrence Relation
Let f(X) be a function where X is a vertex. f(X) = Y if and only if there are Y unique 

paths from S to X. Compute f(T) to get the answer!

We just concluded f(F) = f(E).

Does this sort of function definition look familiar?



Recurrence Relation
Let f(X) be a function where X is a vertex. f(X) = Y if and only if there are Y unique 

paths from S to X. Compute f(T) to get the answer!

We just concluded f(F) = f(E).

Does this sort of function definition look familiar?

RECURSION!



Recurrence Relation
Now all we have to do if find out what f(E) is.



Recurrence Relation
Now all we have to do if find out what f(E) is.

What is f(E)?



Recurrence Relation
Now all we have to do if find out what f(E) is.

What is f(E)?

f(E) = f(B) + f(C) + f(D)



Recurrence Relation
Now all we have to do if find out what f(E) is.

What is f(E)?

f(E) = f(B) + f(C) + f(D)

Wow! Not complicated at all!



Recurrence Relation
Now all we have to do if find out what f(B), f(C), f(D) are…

No more gimmicks! Time to work out a solution for a general case!



Recurrence Relation
Given a vertex X, what is f(X)?



Recurrence Relation
Given a vertex X, what is f(X)?

f(X) = f(Y0) + f(Y1) + … + f(Yk),

Where there edges (Y0, X), (Y1, X), …, (Yk, X) exists in the graph.

i.e. X is Y0, Y1, …,Yk’s neighbour.



Recurrence Relation
Given a vertex X, what is f(X)?

f(X) = f(Y0) + f(Y1) + … + f(Yk),

Where there edges (Y0, X), (Y1, X), …, (Yk, X) exists in the graph.

i.e. X is Y0, Y1, …,Yk’s neighbour.

Wow! So easy!



Recurrence Relation
We defined A to be our starting vertex S. What if we want to compute f(A) = f(S)?



Recurrence Relation
We defined A to be our starting vertex S. What if we want to compute f(A) = f(S)?

Why do we want to compute this???



Recurrence Relation
We defined A to be our starting vertex S. What if we want to compute f(A) = f(S)?

Why do we want to compute this???

Because f(B) = f(A), we will need it at some point.



Recurrence Relation
We defined A to be our starting vertex S. What if we want to compute f(A) = f(S)?

Why do we want to compute this???

Because f(B) = f(A), we will need it at some point.

f(A) = f(S) = 1.

There is one path from A to A, namely, [A]!



Recurrence Relation
We defined A to be our starting vertex S. What if we want to compute f(A) = f(S)?

Why do we want to compute this???

Because f(B) = f(A), we will need it at some point.

f(A) = f(S) = 1.

There is one path from A to A, namely, [A]!

No recursion for this one! We call it a base case.



Problem solved! 
We did it!



Problem solved??? 
We did it???



Call stack
Going from A to J, what does the call stack look like?



Call stack
Going from A to J, what does the call stack look like?

J H F D B A C A E C A B A G D B A C A E B A C A I F D B A C A E C A B A G D B A 

C A E B A C A



Call stack
Going from A to J, what does the call stack look like?

J H F D B A C A E C A B A G D B A C A E B A C A I F D B A C A E C A B A G D B A 

C A E B A C A

Hey! That looks like it is still 2^V!



Overlapping Subproblem
What happened? Why are there still so many calls?

f(H) calls f(F) and f(G).

But f(I) also calls f(F) and f(G).

f(F) and f(G) are computed twice!

How many times are f(D) and f(E) computed?

4 times!



Overlapping Subproblem
How many times are f(B) and f(C) computed?

8 times!

How many times is f(A) called?

16 times!

Oh no!



Overlapping Subproblem
Very important observation:

f(H) calls f(F) and f(G). But f(I) also calls f(F) and f(G).

When computing f(X), we compute f(X)’s subproblems, but these subproblems are 

OVERLAPPING.

Overlapping problems are computed multiple times.



Overlapping Subproblem
Solution?

Don’t compute the overlapping subproblems multiple times.

But how??

Memoization!



Memoization
Create a map M which maps from vertices to numbers, and it has the property

M[X] = f(X).

How does this help?

Suppose we want to compute f(X). Instead of computing the subproblems, check 

whether we’ve already solved the problem. If we have already solved it, use M[X]. 

Otherwise, recursively compute the subproblems, then write the solution to M!



Memoization
What is the complexity now?

O(E)! Wow!

Why did memoization turn an O(2^V) algorithm into an O(V^2)=O(E) algorithm?

Because each recursive call takes O(V) time while a lookup in M takes O(1) time.



Dynamic Programming!



Dynamic Programming
No formal definition… 

As formal as it gets: has recurrence relation, repeated subproblems and an optimal 

substructure (whatever that means).



Dynamic Programming
Sounds very difficult at first. Becomes easy once recurrence relation is found.

i.e. solving this problem is hard, but suppose the value of some subproblems are given 

for free, it becomes easy to solve the problem.

i.e. solving this problem recursively is kind of easy, but the recursion may end up 

making the exact same called multiple times.

i.e. the solution to the problem depends on the solution to the same problem except 

with smaller data (subproblem).

…… Many ways to understand DP!



Dynamic Programming
DAG Paths is one of the most classic DP problems, in fact, every DP problem can be 

reduced to DAG Paths on an implicit graph!

Other classic problems: Longest Increasing Subsequence, Longest Common 

Subsequence, Knapsack, Subset Sum, Minimum String Distance, Coin Change…… 

City Destruction on Kattis is also a classic (not really, it’s written by Modan, he’ll be 

very happy if you give it a try)!



Dynamic Programming
Lots of advanced DP techniques such as

Multidimensional DP,

DP with trees,

DP with bitmask (very fun topic) (solves the famous Travelling Salesman Problem)!



Dynamic Programming
Recurrence is hard to come up with and the concept is hard to grasp at first.

Once recurrence is found the code usually turns out to be very short and clean!

(DP with bitmask tends to have even shorter codes!)



Dynamic Programming
There are 2 approaches to DP.

Top down uses recursion and memoization.

Bottom up (CP3 book described this as the “true form” of DP) starts with base cases 

and builds up.



That’s it! Thanks!


