Intractable Problems and DP with Bitmask

Problem Solving Club
March 1, 2017
Agenda

- **Intractable problems**
 - Complexity classes P, NP, co-NP, #P, completeness
 - How to identify common intractable problems

- **Dynamic programming with bitmask**
 - How DP with bitmask helps solve intractable problems
 - Intractable problems that benefit from DP with bitmask
 - Examples of programming contest problems involving DP with bitmask
Intractable problems

- **Intractable** problems can be solved in theory (e.g., given large but finite time), but which in practice take too long for their solutions to be useful.
- This differs from **undecidable** problems, which cannot even be solved in theory (given any finite amount of time).
- A commonly cited undecidable problem is the **halting problem**:
 - Given the description of an arbitrary program and a finite input, decide whether the program finishes running or will run forever.
- Alan Turing famously proved the halting problem undecidable.
Intractable problems

- Which problems are intractable? Nobody really knows.
- **Cobham–Edmonds thesis:** Intractable problems are those that cannot be computed in polynomial time, i.e., in the complexity class P.
- This is the commonly used definition of intractability.
Complexity classes

Problems in computer science are divided into complexity classes.

- **P** Problems that can be solved in polynomial time (tractable).
 - Given a graph, what is the shortest path between two vertices?
- **NP** Problems where the solution can be verified in polynomial time.
 - Given a set of integers, is there any subset whose sum is zero?
- **co-NP** Complement of problems in NP.
 - Given a set of integers, is there **no** subset whose sum is zero?
- **#P** Counting problems associated with problems in NP.
 - Given a set of integers, **how many subsets** sum to zero?

Note: $P \subseteq NP$ and $P \subseteq co-NP$. It is not known if $P = NP$, $NP = co-NP$, $P = co-NP$.
A problem is **complete** for a complexity class if it is among the "hardest" problems in the complexity class.

NP-complete problems are the “hardest” problems in NP.

If an NP-complete problem can be solved in polynomial time, all problems in NP can be solved in polynomial time.

co-NP-complete and #P-complete are similarly defined.
Common intractable problems

NP-complete (solution can be verified in polynomial time)

- **Subset sum**: Given a set of integers, is there any subset whose sum is 0?
- **Hamiltonian path**: Given a graph, does a Hamiltonian path exist?
- **Travelling salesman**: Given a graph, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- **Satisfiability**: Given a boolean formula, is there any assignment of variables that will make it true? (Special case of 2-SAT is in P.)
- The complements of these problems are co-NP-complete.
- Counting versions of these problems are #P-complete.
Why do we care about intractable problems?

- The best known solutions for intractable problems generally run in exponential or subexponential time.
- For decades, people have tried to find polynomial time solutions to intractable problems, but have not succeeded.
- By recognizing intractable problems, we can avoid wasting time trying to find an efficient solution.
- Common techniques used to solve intractable problems are complete search and DP with bitmask.
- If exact solution is not needed, efficient approximation algorithms exist.
Dynamic programming with bitmask

- DP with bitmask is a technique usually used to solve intractable problems.
- It generally improves an $O(n!)$ solution to $O(2^n)$.
- While still intractable, the runtime is significantly better.
- Contest problems with $10 \leq n \leq 20$ can indicate DP with bitmask

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
<th>n!</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1,024</td>
<td>3,628,800</td>
</tr>
<tr>
<td>20</td>
<td>1,048,576</td>
<td>2,432,902,008,176,640,000</td>
</tr>
</tbody>
</table>
Travelling salesman problem

Given a graph, what is the shortest possible route that visits each city exactly once and returns to the origin city?

- What is an obvious greedy solution? Does it work?
- How would we solve this by complete search?
- What is the runtime?
Travelling salesman problem: Overlapping subproblems

Let’s say we have 7 vertices. Consider these routes:

- 1→2→3→4→{5,6,7}→1
- 1→3→2→4→{5,6,7}→1

What can we say about the best order in which to visit 5,6,7 in these two cases?
Travelling salesman problem: Overlapping subproblems

Let’s say we have 7 vertices. Consider these routes:

- 1→2→3→4→{5,6,7}→1
- 1→3→2→4→{5,6,7}→1

The best order to visit remaining vertices depends only on:

- The set of vertices visited
- The current vertex
Travelling salesman problem: Dynamic programming solution

Without loss of generality, assume that the cycle starts and ends at vertex 1.

If we have 7 vertices, we can use the following DP solution:

\[f(v_1, v_2, v_3, v_4, v_5, v_6, v_7, \text{cur}) = \text{Assuming we've visited a certain set of vertices, and we are at “cur” vertex, the minimum distance to visit remaining vertices and return to vertex 1.} \]

- \(v_i = 1 \) if vertex \(i \) has been visited, else 0
- \(\text{cur} = \text{current vertex number} \)

How big is the DP array?
Travelling salesman problem: Dynamic programming solution

DP function $f(v_1, v_2, v_3, v_4, v_5, v_6, v_7, \text{cur})$

- **Base case:** $f(1, 1, 1, 1, 1, 1, 1, \text{cur}) = \text{dist}[\text{cur}][1]$
 - If we’ve visited all vertices, need to return to vertex 1
- **General case:** $f(v_1, v_2, v_3, v_4, v_5, v_6, v_7, \text{cur}) = \min_{(j \text{ where } v_j=0)} (\text{dist}[\text{cur}][j] + f(<\text{set } v_j = \text{true}>, j))$
 - If we haven’t visited all vertices, try all next vertices and choose the best one.
- The final answer is $f(0, 0, 0, 0, 0, 0, 0, 1)$
- What is the runtime of of this algorithm?
To implement \(f(v_1, v_2, v_3, v_4, v_5, v_6, v_7, \text{cur}) \), a **bitmask** is usually used to represent the set of visited vertices. Top-down DP is almost always used.

```c
const int N = 20;
const int INF = 100000000;
int c[N][N]; // adjacency matrix
int mem[N][1<<N]; // DP memoize array
memset(mem, -1, sizeof(mem));
int tsp(int i, int S) {
    if (S == ((1 << N) - 1)) {
        return c[i][0];
    }
    if (mem[i][S] != -1) {
        return mem[i][S];
    }
    int res = INF;
    for (int j = 0; j < N; j++) {
        if (S & (1 << j))
            continue;
        res = min(res, c[i][j] + tsp(j, S | (1 << j)));
    }
    mem[i][S] = res;
    return res;
}
// tsp(0, 0) is the answer
```
A secret santa is where n ($2 \leq n \leq 15$) people are each assigned another person to buy a gift for.

There may also be some restrictions. For example, Jack (person 1) is not allowed to be assign Jane (person 2).

Given n and a list of restrictions, how many ways can we assign people?

Note: This is also known as the permanent of a matrix, and its calculation is #P-complete.

How would we solve this by complete search? What is the runtime? What do you notice about the limits on n?
Secret Santa: Overlapping subproblems

Let’s say we have 7 people. Consider these partial assignments:

- (1→3)(2→5)
- (1→5)(2→3)

What can we say about the number of ways to complete the remaining assignments in these two cases?
Let’s say we have 7 people. Consider these partial assignments:

- \((1 \rightarrow 3)(2 \rightarrow 5)\)
- \((1 \rightarrow 5)(2 \rightarrow 3)\)

The number of ways to complete the remaining assignments depends only on the set of people who have already been assigned to (here, 3 and 5).

Note: We have to assign people in a fixed order.
Secret Santa: DP solution

$f(\text{assigned}) = \# \text{ of ways to assign remaining people, where assigned is a bitmask of the people who have already been assigned to.}$

- **Base case:** $f(\text{everyone assigned}) = 1$
- **General case:** $f(\text{assigned}) = \sum_{\text{persons who have not been assigned to } j} (\text{assign current person to } j \text{ if it is allowed})$
- The current person is an **implicit** DP parameter - it is the number of persons assigned (number of ones in the bitmask).
- What is the runtime of this algorithm?
Secret Santa: DP solution

```python
def sv(bs):
    if bs == (1<<N)-1: return 1  # Base case
    if bs in dp: return dp[bs]
    ans = 0

    curPerson = 0  # Figure out current person by counting bits in bs
    for n in range(N):
        if bs & 1<<n:
            curPerson += 1

    for n in range(N):  # Try to assign curPerson to every possible other person
        if (not (bs & 1<<n)) and (not rst[curPerson][n]):
            ans += sv(bs | 1<<n)

    dp[bs] = ans
    return ans

# answer is sv(0)
```
Intractable problems can be solved in theory (e.g., given large but finite time), but which in practice take too long for their solutions to be useful.

DP with bitmask is a problem solving technique for intractable problems, that usually improves an $O(n!)$ solution to $O(2^n)$.

The travelling salesman problem is a common NP-complete problem. DP with bitmask reduces its $O(n!)$ solution to $O(n^22^n)$. This makes the problem feasible for a larger range of n.

The secret santa problem (permanent of a matrix) is a #P-complete problem. DP with bitmask reduces its $O(n!)$ solution to $O(n2^n)$.