Intractable Problems and DP with Bitmask

Problem Solving Club March 1, 2017

NP Problems

Agenda

- Intractable problems
- Complexity classes P, NP, co-NP, \#P, completeness
- How to identify common intractable problems
- Dynamic programming with bitmask
- How DP with bitmask helps solve intractable problems
- Intractable problems that benefit from DP with bitmask
- Examples of programming contest problems involving DP with bitmask

Intractable problems

- Intractable problems can be solved in theory (e.g., given large but finite time), but which in practice take too long for their solutions to be useful.
- This differs from undecidable problems, which cannot even be solved in theory (given any finite amount of time).
- A commonly cited undecidable problem is the halting problem:
- Given the description of an arbitrary program and a finite input, decide whether the program finishes running or will run forever.
- Alan Turing famously proved the halting problem undecidable.

Intractable problems

- Which problems are intractable? Nobody really knows.
- Cobham-Edmonds thesis: Intractable problems are those that can be cannot be computed in polynomial time, i.e., in the complexity class P.
- This is the commonly used definition of intractability.

Complexity classes

Problems in computer science are divided into complexity classes.

- P Problems that can be solved in polynomial time (tractable).
- Given a graph, what is the shortest path between two vertices?
- NP Problems where the solution can be verified in polynomial time.
- Given a set of integers, is there any subset whose sum is zero?
- co-NP Complement of problems in NP.
- Given a set of integers, is there no subset whose sum is zero?
- \#P Counting problems associated with problems in NP.
- Given a set of integers, how many subsets sum to zero?

Note: $P \subseteq N P$ and $P \subseteq$ co-NP. It is not known if $P=N P, N P=c o-N P, P=c o-N P$

Complexity classes - completeness

- A problem is complete for a complexity class if it is among the "hardest" problems in the complexity class.
- NP-complete problems are the "hardest" problems in NP.
- If an NP-complete problem can be solved in polynomial time, all problems in NP can be solved in polynomial time.
- co-NP-complete and \#P-complete are similarly defined.

Common intractable problems

NP-complete (solution can be verified in polynomial time)

- Subset sum: Given a set of integers, is there any subset whose sum is 0 ?
- Hamiltonian path: Given a graph, does a Hamiltonian path exist?
- Travelling salesman: Given a graph, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- Satisfiability: Given a boolean formula, is there any assignment of variables that will make it true? (Special case of 2-SAT is in P.)
- The complements of these problems are co-NP-complete.
- Counting versions of these problems are \#P-complete.

Why do we care about intractable problems?

- The best known solutions for intractable problems generally run in exponential or subexponential time.
- For decades, people have tried to find polynomial time solutions to intractable problems, but have not succeeded.
- By recognizing intractable problems, we can avoid wasting time trying to find an efficient solution.
- Common techniques used to solve intractable problems are complete search and DP with bitmask.
- If exact solution is not needed, efficient approximation algorithms exist.

Dynamic programming with bitmask

- DP with bitmask is a technique usually used to solve intractable problems.
- It generally improves an $\mathrm{O}\left(\mathrm{n}!\right.$) solution to $\mathrm{O}\left(2^{n}\right)$.
- While still intractable, the runtime is significantly better.
- Contest problems with $10 \leq \mathrm{n} \leq 20$ can indicate DP with bitmask

n	2^{n}	$n!$
1	2	2
10	1,024	$3,628,800$
20	$1,048,576$	$2,432,902,008,176,640,000$

Travelling salesman problem

Given a graph, what is the shortest possible route that visits each city exactly once and returns to the origin city?

- What is an obvious greedy solution? Does it work?
- How would we solve this by complete search?
- What is the runtime?

Travelling salesman problem: Overlapping subproblems

Let's say we have 7 vertices. Consider these routes:

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow\{5,6,7\} \rightarrow 1$
- $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow\{5,6,7\} \rightarrow 1$

What can we say about the best order in which to visit $5,6,7$ in these two cases?

Travelling salesman problem: Overlapping subproblems

Let's say we have 7 vertices. Consider these routes:

- $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow\{5,6,7\} \rightarrow 1$
- $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow\{5,6,7\} \rightarrow 1$

The best order to visit remaining vertices depends only on:

- The set of vertices visited
- The current vertex

Travelling salesman problem: Dynamic programming solution

Without loss of generality, assume that the cycle starts and ends at vertex 1. If we have 7 vertices, we can use the following DP solution:
$f\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right.$, cur $)=$ Assuming we've visited a certain set of vertices, and we are at "cur" vertex, the minimum distance to visit remaining vertices and return to vertex 1 .

- $v_{i}=1$ if vertex i has been visited, else 0
- cur = current vertex number

How big is the DP array?

Travelling salesman problem: Dynamic programming solution

DP function $f\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right.$, cur $)$

- Base case: $\mathbf{f}(1,1,1,1,1,1,1$, cur $)=\operatorname{dist}[c u r][1]$
- If we've visited all vertices, need to return to vertex 1
- General case: $f\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, c u r\right)=$ $\min _{(\mathrm{j} \text { where } \mathrm{vj}=0)}\left(\right.$ dist[cur][j] $+\mathrm{f}\left(\left\langle\right.\right.$ set $\mathrm{v}_{\mathrm{j}}=$ true $\left.\left.>, \mathrm{j}\right)\right)$
- If we haven't visited all vertices, try all next vertices and choose the best one.
- The final answer is $f(0,0,0,0,0,0,0,1)$
- What is the runtime of of this algorithm?

Where is the bitmask?

To implement $f\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right.$, cur $)$, a bitmask is usually used to represent the set of visited vertices. Top-down DP is almost always used.

```
const int N = 20;
const int INF = 100000000;
int c[N][N]; // adjacency matrix
int mem[N][1<<N]; // DP memoize array
memset(mem, -1, sizeof(mem));
int tsp(int i, int S) {
    if (S == ((1 << N) - 1)) {
        return c[i][0];
    }
    if (mem[i][S] != -1) {
        return mem[i][S];
    }
```

```
int res = INF;
for (int j = 0; j < N; j++) {
        if (S & (1 << j))
            continue;
        res = min(res, c[i][j] +
        tsp(j, S | (1 << j)));
}
mem[i][S] = res;
return res;
// tsp(0, 0) is the answer
```

\}

Secret Santa (CCPC 2016)

- A secret santa is where $n(2 \leq n \leq 15)$ people are each assigned another person to buy a gift for.
- There may also be some restrictions. For example, Jack (person 1) is not allowed to be assign Jane (person 2).
- Given n and a list of restrictions, how many ways can we assign people?
- Note: This is also known as the permanent of a matrix, and its calculation is \#P-complete.
- How would we solve this by complete search? What is the runtime? What do you notice about the limits on n ?

Secret Santa: Overlapping subproblems

Let's say we have 7 people. Consider these partial assignments:

- $(1 \rightarrow 3)(2 \rightarrow 5)$
- $(1 \rightarrow 5)(2 \rightarrow 3)$

What can we say about the number of ways to complete the remaining assignments in these two cases?

Secret Santa: Overlapping subproblems

Let's say we have 7 people. Consider these partial assignments:

- $(1 \rightarrow 3)(2 \rightarrow 5)$
- $(1 \rightarrow 5)(2 \rightarrow 3)$

The number of ways to complete the remaining assignments depends only on the set of people who have already been assigned to (here, 3 and 5).

Note: We have to assign people in a fixed order.

Secret Santa: DP solution

f (assigned) = \# of ways to assign remaining people, where assigned is a bitmask of the people who have already been assigned to.

- Base case: $\mathrm{f}($ everyone assigned) $=1$
- General case: $\mathbf{f (a s s i g n e d)}=$
$\operatorname{sum}_{\text {(persons who have not been assigned toj) }}$ (assign current person to j if it is allowed)
- The current person is an implicit DP parameter - it is the number of persons assigned (number of ones in the bitmask).
- What is the runtime of this algorithm?

Secret Santa: DP solution

```
def sv(bs):
    if bs == (1<<N)-1: return 1 # Base case
    if bs in dp: return dp[bs]
    ans = 0
    curPerson = 0 # Figure out current person by counting bits in bs
    for n in range(N):
        if bs & 1<<n:
            curPerson += 1
    for n in range(N): # Try to assign curPerson to every possible other person
            if (not (bs & 1<<n)) and (not rst[curPerson][n]):
                ans += sv(bs | 1<<n)
    dp[bs] = ans
    return ans

\section*{Summary}
- Intractable problems can be solved in theory (e.g., given large but finite time), but which in practice take too long for their solutions to be useful.
- DP with bitmask is a problem solving technique for intractable problems, that usually improves an \(O(n!)\) solution to \(O\left(2^{n}\right)\).
- The travelling salesman problem is a common NP-complete problem. DP with bitmask reduces its \(O(n!)\) solution to \(O\left(n^{2} 2^{n}\right)\). This makes the problem feasible for a larger range of \(n\).
- The secret santa problem (permanent of a matrix) is a \#P-complete problem. DP with bitmask reduces its \(\mathrm{O}\left(\mathrm{n}!\right.\) ) solution to \(\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)\).```

