
Stacks and Queues
Problem Solving Club Oct 19 2016



Stacks

●A stack is a container of 
objects that are inserted 
and removed according to 
the last-in first-out (LIFO) 
principle
●Only two operations are 
allowed: push the item into 
the stack, and pop the item 
out of the stack.



Usage of stack

●Undo mechanism
●Function call stack

●Reverse a string
●Depth first search (DFS)



Stack implementation

●Array stack 
implementation

●Java ArrayList/Stack
●C++ std::vector/stack

●Linked list stack 
implementation

●Java LinkedList
●C++ std::list



Queues

●A queue is a container of 
objects (a linear 
collection) that are 
inserted and removed 
according to the first-in 
first-out (FIFO) principle.
●An excellent example of a 
queue is a line of students 
in the food court



Usage of queues

●Job processing / 
scheduling

●Breadth first search (BFS) 
– single source shortest 
paths in an undirected 
graph



Queue implementation

●Array-based double ended 
queue

●Java ArrayDeque
●C++ std::deque/ queue

●Linked list based queue
●Java LinkedList

●C++ std::list



Priority queues

●A priority queue is like a 
regular queue or stack data 
structure
●But additionally each 
element has a "priority" 
associated with it.
●In a priority queue, an 
element with high priority 
is served before an 
element with low priority.



Usage of priority queues

●Sorting (heapsort)
●Caching

●Dijkstra’s algorithm –
singles source shortest 
paths in a directed graph



Priority queue implementation

●Binary heap based 
priority queue

●Java PriorityQueue
●C++ std::priority_queue

●Self-balancing binary 
search tree based priority 
queue
●Java TreeSet

●C++ std::set



Recap

●Stack – last-in first-out (LIFO).
●What is the complexity of push/pop?

●Answer: O(1) – constant time
●What is the preferred data structure for 
implementation?
●Answer: Array – faster and uses less memory than 
linked list

●Queue - first-in first-out (FIFO)
●What is the complexity of enqueue/dequeue?

Answer: O(1) – constant time


