

ACM ICPC Asia Kuala Lumpur Regional Contest 2014

31 October 2014 – 1 November 2014

Problem Set 2014

This problem set contains 12 questions (A-L) in 26 pages

ACM ICPC Malaysia Office

Kulliyyah of Information and Communication Technology
International Islamic University Malaysia

Kuala Lumpur, Malaysia

1

A
THE MOUNTAIN OF

GOLD?

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

Ancient history and myth points to the Gunung Ledang (a.k.a. Ledang Mountain, as

“gunung” is mountain in Malaysian) being the site of rich gold deposits, luring traders from

as far as Greece and China. In the 14th Century, the Chinese seafarers plying the Straits of

Melaka called it ‘Kim Sua’ meaning the ‘Golden Mountain’. The mountain was named

‘Gunung Ledang’, which means ‘mount from afar’, during the period of the Majapahit

empire. Legend has it, that before the death of Princess Gunung Ledang, she hid a huge

amount of gold far back in time during the creation of earth in Ledang Mountain. It is

(apparently, becoming “was”) a mystery as to how the princess was able to go so far back in

time. However, the princess was known to possess mystical powers that could enchant any

pool she bath in into a portal that could manipulate time and space. A Malaysian historian of

this time have discovered many of these pools located near many mountains around the world

and named them “Ledang Pools”. A Ledang Pool is a portal through space and time

connecting two pools. Ledang Pools have a few peculiar properties:

 A Ledang Pool is a one way portal with two end points, i.e. it connects exactly two

mountains.

 The time it takes to travel through a Ledang Pool is negligible.

 Each mountain might have multiple Ledang Pools’ end point in its area.

 For some unknown reasons, starting from Ledang Mountain in Malaysia, it is always

possible to end up in any mountain (of course, which also has Ledang Pool end point)

on earth by hopping a sequence of Ledang Pools.

 There are no Ledang Pools with both end points on the same mountain area.

 Each Ledang Pool has a fixed time difference (distortion) between their end points.

For example, traveling through a certain Ledang Pool may cause that person to end up

42 years in the past at the other end point. It’s a space and time traveling!

The Malaysian historian suspects that a large amount of gold is hidden in Ledang Mountain

in the past because there’s no gold found in this mountain at this time (but then, where does

2

the myth come from?). Starting from Ledang Mountain, the historian wants to reach the same

mountain (Ledang Mountain) in the past. In order to this, he has to hop into two or more

Ledang Pools, doing the space-and-time-travel things, and end up at Ledang Mountain in the

past. Note that he does not care in which time in the past he will end up at Ledang Mountain

as long as it is in the past. Your task is to help this historian to determine whether it is

possible to reach Ledang Mountain in the past from Ledang Mountain in the present time by

hopping a sequence of Ledang Pools.

Input

The input file starts with a line containing the number of cases T (1 ≤ T ≤ 20). Each case

starts with two numbers N and M in a line. These indicate the number of mountains which

have Ledang Pool end point (1 ≤ N ≤ 1,000) and the number of Ledang Pools (0 ≤ M ≤

2,000). The pools are numbered from 0 (Ledang Mountain in Malaysia) up to N-1. The next

M lines each contains three integers A, B, C (0 ≤ A, B < N; A ≠ B; -1,000 ≤ C ≤ 1,000)

denoting the properties of one Ledang Pool, i.e. someone can do a space-time-travel from

mountain A to mountain B and he will end up C year in the future/past. If C is positive, then

it is in the future, otherwise it is in the past.

Output

For each case, output in a line "Case #X: Y" (without quotes) where X is the case number

starting from 1, and Y is “possible” (without quotes) if it is indeed possible to reach Ledang

Mountain in the past, otherwise output Y as “not possible” (without quotes).

Sample Input Sample output

2

2 2

0 1 15

1 0 -20

4 4

0 1 10

1 2 20

2 3 30

3 0 -60

Case #1: possible

Case #2: not possible

3

B
SEQUENCE

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

Mr. Adam loves to solve challenge! He is given a binary sequence. For K times, Mr. Adam

should choose an element of the sequence, and flip it (changes from 0 to 1 or 1 to 0, depends

on the element). In this challenge, the final steps of the sequence should be a sequence

contains only zeroes.

Mr. Adam can solve this challenge easily. However, he starts to wonder in how many ways

he can solve this challenge. Now, it becomes your challenge! For this problem, you only need

to compute that number modulo by 1,000,000,007 (10
9
 + 7).

Note: Two ways are considered to be different if there is an i such that at i-th time, Mr. Adam

chooses different elements.

Input

The first line of input contains an integer T (1 ≤ T ≤ 50), the number of cases. The next lines

describe T cases.

Each cases starts with a line consists of two integers N (1 ≤ N ≤ 1,000) and K (1 ≤ K ≤ 1,000)

separated by a space, denotes the length of the sequence and the same K as described in the

description. The next N lines, each consists of either 0 or 1, which is an element of the binary

sequence. The integers in the input are given in the same order as the sequence.

Output

For each case, output in a line "Case #X: Y" (without quotes) where X is the case number

starting from 1, and Y is the number of ways to solve this challenge modulo by

1,000,000,007 (10
9
 + 7).

4

Sample Input Sample Output
5

1 10

0

1 11

1

1 10

1

2 30

0

0

3 10

0

0

0

Case #1: 1
Case #2: 1
Case #3: 0
Case #4: 536870912
Case #5: 14763

5

C
TURTLE GRAPHICS

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

Turtle graphics is a popular way for introducing programming to kids. It was part of the

original Logo programming language developed by Wally Feurzig and Seymour Papert in

1966. It involved the Turtle, originally a robotic creature that moved around on the floor. It

can be directed by typing commands into the computer. The command ‘F’ (forward) causes

the turtle to move forward one step, ‘R’ (right) rotates the turtle 90 degrees clockwise while

leaving it in the same place on the floor, and ‘L’ (left) rotates the turtle 90 degree

anticlockwise and leaving it in the same location.

When the turtle moves forward it will leave a trail. We will represent the trail with character

'x'.

For example, the command

 FFFRFFFFLFFFRFFFFF

will create the pattern below

 y 0...............................

9...............................

8.........xxxxxx...............

7.........x.....................

6.........x.....................

5.....xxxxx.....................

4.....x.........................

3.....x.........................

2.....o.........................

1...............................

0...............................

 0123456789012345678901234567890 x

with assumption that the initial direction of the turtle is facing to the North (the y-axis) and

the initial location of the turtle is marked as 'o'. The maximum size of the drawing area is

64x64 with the origin coordinate (0, 0) at the lower left corner. You may safely assume that

the path of the turtle never exceed the drawing area.

6

Input

First line of the input contains T the number of test cases (1 ≤ T ≤ 50). Each test case consists

of two lines. The first line of each test case contains a pair of integer, x and y (0 ≤ x, y < 64)

which represents the starting point of the path. The second line contains a string with no more

than 128 characters. Each character of the string is either ‘F’, ‘R’ or ‘L’ which represents a

computer command for the turtle in order.

Output

For each case, output in a line "Case #X: x y n" (without quotes) where X is the case number

starting from 1. x and y represents the final location of the turtle and n is the number of

locations in which the turtle visits more than once.

Sample Input Sample Output
2

5 2

FFFRFFFFLFFFRFFFFF

2 2

FFFRFFFRFFRFFFF

Case #1: 14 8 0

Case #2: 1 3 1

7

D
CIRCLE AND MARBLE

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

Adi has fallen in love with Putri and they have been in relationship for years. Adi is now

ready to propose Putri and ask her to marry him. However, Putri doesn’t seem want to make

things easy for Adi. She asked Adi to play a game with her, and if he can win against her,

then she will marry him.

At first, Putri drew one circle and put some marbles inside it. Next, she drew another circle

and put some marbles inside it. She also drew one arrow from the previous drawn circle

which point to this new circle. After that, she drew another circle, put some marbles inside it,

and drew one arrow from one of the previously drawn circle to this new circle. These steps

are repeated until she drew N circles, each with marbles (some circles might be empty). Note

that no circles intersect each others and no circle contains another circle. After she had drawn

those N circles, Putri then said “Let’s play a game”.

“We alternately take turn in this game. In each turn, the player should choose one circle … let

say it’s the chosen circle. Take exactly one marble from the chosen circle, and move that

marble to one of the circles which is pointed by the arrow originated from the chosen circle,”

she explained. “The one who cannot make his or her move, lose”, she added. Wondering

about this game, Adi then asked, “How about those circles which do not have any arrow

originated from them? Can we take marble from those circles?” Putri then replied, “Ahh.. no,

you cannot choose those circles. It’s a mandatory that you move one marble to another circle.

Since you cannot move any marble from those circles, then you cannot choose them.” Putri

then added, “Remember, you should move exactly one marble in your move, so obviously

you cannot choose circles which do not have any marble inside it. Oh, by the way, the rule

also applies to me”.

Adi realized that this kind of game has a fool-proof strategy. It means if both players play

optimally, then the outcome of the game depends only on the initial configuration. Adi then

asked Putri one crucial information, “So… who moves first?”. Putri replied, “I’ll let you

decide that”. Adi then put a big smile on his face.

8

Given the initial game configuration, determine whether Adi should be the first player or the

second player to be able to win the game. Assume Putri play optimally; in other words, Putri

will surely beat Adi whenever she sees the chance.

Input

The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each

case begins with an integer N (3 ≤ N ≤ 20,000) representing the number of circles drawn by

Putri. The circles are numbered from 1 to N. The next line contains N integers Mi (0 ≤ Mi ≤

1,000,000) denoting the number of marbles in ith circle respectively (1 ≤ i ≤ N). The

following line contains N integers Pi (1 ≤ Pi < i ≤ N) denoting which circle has an arrow

pointing to it. P1 is always 0, as it is the first circle drawn by Putri. This means no circle

points to circle 1.

Output

For each case, output in a line "Case #X: Y" (without quotes) where X is the case number

starting from 1, followed by a single space, and Y is “first” (without quotes) if Adi should

take the first move in order to win the game, or “second” (without quotes) if he should play

as second player.

Sample Input Sample Output
4

3

1 1 2

0 1 2

3

1 2 2

0 1 2

4

1 1 2 3

0 1 1 3

5

3 2 0 1 4

0 1 2 2 4

Case #1: first
Case #2: second
Case #3: first
Case #4: first

9

For ease of explanation, let’s define some notations:

• move(a, b) as moving one marble from circle a to circle b.

• ⟨m0, m1, m2, …, ⟩ as the number of marbles in circle 1, 2, 3, …, respectively.

Explanation for 1st sample input

First player plays move(2, 3) resulting ⟨1, 0, 3⟩. Second player has no choice but to response

with move(1, 2) resulting ⟨0, 1, 3⟩. First player win the game with move(2, 3) resulting ⟨0, 0,

4⟩.

Explanation for 2nd sample input

No matter what the first player does, he/she cannot win this game. There are 2 moves that can

be played by the first player:

• move(1, 2), resulting ⟨0, 3, 2⟩; the two players then take turn moving marbles on

circle 2 to circle 3, and this game will be won by the second player.

• move(2, 3), resulting ⟨1, 1, 3⟩; the second player then counter with move(2, 3) leaving

⟨1, 0, 4⟩. The first player has no choice but to play move(1, 2), which continued by the

second player with move(2, 3) to conclude the game.

Therefore, in this game, Adi should be the second player in order to win.

Explanation for 3rd sample input

The following figure corresponds to the game configuration.

First player plays move(1, 2) resulting ⟨0, 2, 2, 3⟩. Second player has no choice but to

response with move(3, 4) resulting ⟨0, 2, 1, 4⟩. First player then move the only marble in

circle 3 to circle 4 and win the game.

10

E
GROUP OF STRANGERS

Input Standard Input

Output Standard Output

Time Limit

2 seconds

Problem Description

Online social networking services such as Facebook, Google+, Instagram, etc. has grown

rapidly in the last decade. Nowadays, almost all youngsters, especially those on developed

countries, know and use social networking services in their daily life. In this service, user

creates account to represent him/her. Depends on the type of the services, each user

establishes connections to other users in the same social network service. For example, in

Facebook, this connection is called “friend” and it is bidirectional; it means if A is a friend to

B, then B is also a friend to A. Meanwhile, in services such as Google+, any connection does

not necessary bidirectional. You can “follow” (create connection to) some other users without

requiring them to follow you back. In this problem, we regard each connection as

bidirectional.

Supposed you have relationship information of N users in a certain social networking

services. In how many ways can you choose three users such that those three are strangers to

each other? In other words, these three persons do not have any connection to each other. For

example, consider relationship information of 7 users as shown in the following figure.

In this example, there are 7 ways to choose three users which are stranger to each other,

namely: A-E-F, A-E-G, B-C-E, B-C-G, B-E-G, C-E-F, and C-E-G. If you observe it

carefully, user D cannot exists in any of those group-of-three as he has connections to all

other users except G, thus any group-of-three will contain at least one user whom D connects

to. An invalid example would be A-B-E. Even though A and B does not have any connection

to E, but A and B are connected to each other.

11

Note that two groups are considered different if and only if both groups differ by at least one

member.

Input

The first line of input contains an integer T (T ≤ 60) denoting the number of cases. Each case

begins with two integers N (3 ≤ N ≤ 5,000) and M (0 ≤ M ≤ 20,000) denoting the number of

users and connections in the given social networking service. The following M lines each

contains two integers A and B (1 ≤ A, B ≤ N; A ≠ B) representing a connection between user

A and user B. You may assume that all connections are unique.

Output

For each case, output in a line "Case #X: Y" (without quotes) where X is the case number

starting from 1, followed by a single space, and Y is in how many ways you can choose three

users such that they are stranger to each other.

Sample Input Sample Output
4
7 9
1 2
1 3
1 4
2 4
2 6
3 4
4 5
4 6
6 7
6 4
1 2
2 4
2 3
4 3
3 0
3 1
1 2

Case #1: 7
Case #2: 8
Case #3: 1
Case #4: 0

12

F
PANTUN GRADER

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

A pantun is a traditional form of oral Malay verse. It is believed to have evolved to its most

current form in the 15th century, as evidenced by Malay manuscripts. It has been adapted by

both French and British writers since the late 19th century. Victor Hugo (picture) is

sometimes credited with its introduction to the Western world, where

it is called the "pantoum." In its most basic form the pantun consists

of a quatrain which employs an abab rhyme scheme. A pantun is

traditionally recited according to a fixed rhythm and as a rule of

thumb, in order not to deviate from the rhythm, every line should

contain between 8 and 12 syllables (a.k.a. syllable count

requirement). A pantun is a four-lined verse consisting of alternating,

roughly rhyming lines. The first and second lines sometimes appear

completely disconnected in meaning from the third and fourth, but

there is almost invariably a link of some sort.

Most Malay words has the following syllable structure: 6 and above length of word has 3

syllables, 4 and 5 length of word has 2 syllables, and 3 and less length of word has 1 syllable.

However there are two general exceptions: for 6 length of word that contain ‘ng’ or ‘ny’

within the word, it has 2 syllables. For 3 length of word that starts with vowel alphabet, it has

2 syllables. For example: “aku” has 2 syllables, “kau” has 1 syllable, “berlari” has 3 syllables,

“belang” has 2 syllables, “si” has 1 syllable and “seorang” has 3 syllables.

Pantun rhythm has the following structure. The last two alphabets of the last word in

alternating verses should be the same, i.e. 1
st
 - 3

rd
 verses, and 2

nd
 - 4

th
 verses. For example,

consider the following pantun and observe the bold (and underlined) alphabets.

 Dua tiga kucing berlari

 Mana nak sama si kucing belang

 Dua tiga boleh kau cari

 Mana nak sama aku seorang

As you can see, the 1
st
 and 3

rd
 verses have a same rhythm (ended with “ri”), while the 2

nd
 and

4
th

 verses also have a same rhythm (ended with “ng”). This is an example of pantun with

good rhythm (both pairs rhyme). If we analyze the syllable count of the above pantun, then:

13

First verse : 8 syllables (1+2+2+3)

Second verse : 10 syllables (2+1+2+1+2+2)

Third verse : 8 syllables (1+2+2+1+2)

Forth verse : 10 syllables (2+1+2+2+3)

This pantun also has a same number of syllables for each pair of alternating verse, which is

also a sign of a good pantun.

As someone who loves pantun, there are so many pantun that you need to assessed. Thus, it is

handy to have an automatic pantun early-evaluator (we call it early-evaluator as the result of

this evaluator only serves to determine the priority of pantun which should be assessed

first).We decided that the evaluator should score the pantun in the following way:

 10 points for each verse which fulfill the syllable count requirement (maximum of 4 verses).

 20 points for each pair of alternating verse which fulfill the rhythm requirement (maximum 2

pairs of alternating verses).

 10 points for each pair of alternating verse which have the same number of syllables (maximum

2 pairs of alternating verses).

The given pantun might have an arbitrary number of verses, but you should only consider the

first 4 verses at most. Penalty of 10 points are given for each extra verse. Your task is to build

this pantun early-evaluator.

Input

First line of input is an integer N that represents the number of test case, followed by N (1 ≤

N ≤ 50) lines where each line of input contains several verses where each verse is separated

by a symbol comma, and ended by a symbol period. The total number of alphabet in a pantun

will be not more than 255 including symbol comma and period, and the minimum length of

word is 2.

Output

For each test case, the output contains a line in the format “Case #X: A B C D E” where X is

the case number (starting from 1), A is an integer represents the point for syllable structure

marks, B is an integer represents the point for rhythm structure marks, C is an integer

represents the point for having exactly same number of syllable, D is an integer represents the

point for penalty and E represents the overall points (i.e. A + B + C – D).

Sample Input Sample Output

3

Dua tiga kucing berlari, Mana nak sama si

kucing belang, Dua tiga boleh kau cari,

Mana nak sama aku seorang.

Banyak udang banyak garam, Banyak orang

banyak ragam.

Aku kau, Dia saya, Aku kau, Dia saya, Aku

kau, Dia saya.

Case #1: 40 40 20 0 100

Case #2: 20 0 0 0 20

Case #3: 0 40 20 20 40

14

G
HARI MERDEKA

Input Standard Input

Output Standard Output

Time Limit

3 seconds

Problem Description

Malaysia’s Independence Day -- also known as Hari Merdeka -- is celebrated each year on 31

August to commemorate the independence of Federation of Malaya from British colonial rule

in 1957. During the whole month of August, many Malaysians express their patriotisms and

loves toward their country by raising Malaysian flag on their home’s balcony and on any

vehicles they have (baby stroller included). This independence day celebration is usually

incomplete without shouting “Merdeka!” seven times.

For the next year Independence Day celebration, IIUM plans to put up a long banner around

IIUM’s main campus. The committees want to write meaningful and motivating words in this

banner to inspire students (and possibly professors too). To make things interesting, they

agree that all words should be written without spaces in one single line. Moreover, they also

agree that words are allowed to overlap each other. For example, “WORDER” contains the

words: “WORD” and “ORDER”. For ease of explanation, let say whatever is written on the

banner as text.

The committees have compiled a list of words and assigned each word with a score which

will be counted as the text’s score for every occurrence of such word in the text. For example,

if the value of WORD is 5 and ORDER is 8, then the text WORDER has a score of 5 + 8 =

13; WORDWORDER has a score of 5 + 5 + 8 = 18 (notice that WORD occurs twice in this

example).

Aside from words, the committees also want each character in the text to appear as fancy as

possible, thus, each written character will be specially handcrafted. Of course this cause

another problem: handcrafting each character requires additional cost and obviously the

committees’ budget is limited.

Your task in this problem is to help the committees to determine what text should be written

on the banner such that its score is as high as possible while the cost of writing such text is

within the given budget. To make things easier, you only need output the score.

15

Input

The first line contains an integer T (T ≤ 30) denoting the number of cases. Each case begins

with three integers in a single line: N (1 < N ≤ 26), M (1 ≤ M ≤ 100) and B (10 ≤ B ≤ 200)

denoting the number of characters, the number of words, and the committees’ budget. The

next N following lines each contain one character Hi (A-Z) and one integer Ci (1 ≤ Ci ≤ 3)

which represent the cost of writing one character Hi in the text. You may assume Hi are

unique for all i = 1..N. The following M lines each contain one word Wi (1 ≤ |Wi| ≤ 100) and

one integer Si (1 ≤ Si ≤ 100) denoting the score of such word. Assume all characters in the

given set of words exists among Hi.

Output

For each case, output “Case #X: Y” (without quotes) in a line where X is the case number,

starting from 1, followed by a single space, and Y is the highest possible score which can be

obtained in the corresponding case.

Sample Input Sample Output
2

3 3 10

A 2

B 2

C 3

AA 10

AAA 30

ABC 60

14 8 200

M 2

I 3

R 2

A 1

O 2

E 2

C 2

L 2

F 1

V 2

Y 3

H 1

U 2

N 2

MIRACLE 100

FLUFFY 40

LOVE 100

IVY 10

Case #1: 130

Case #2: 2600

16

VEN 30

AYE 20

HOE 10

EURO 80

Explanation for 1
st
 sample input

The text with highest score is AAAAA. There are 4 occurrences of AA and 3 occurrences of

AAA, which makes the score to be 4 * 10 + 3 * 30 = 130. Writing AAAAA requires 5 A each

costs 2, thus the total cost is 10.

17

H
TÚNEL DE RATA

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

Arturo has just bought a huge mansion in the Andes Mountains in Chile to study up closely

on the chinchilla, an endangered rat species. They live in underground burrows or tunnels

deep under the mansion, and will run and chase there along their own burrow circuits. They

only dig up new burrows after a 30 days cycle.

Arturo has commission you to install motion-sensitive cameras to automatically activate the

recording along these tunnels when these chinchilla pass through them. There should be at

least one motion-sensitive camera along each of the possible running routes as he wants to

capture all possible routes and their habits using minimum number of cameras. The

underground burrows network can be represented as a series of connected intersections and

bidirectional tunnel lanes (see Figure H). A possible running route consists of a start

intersection A followed by a path consisting of two or more lanes (B, D, or E) that eventually

leads back to the start intersection A. These running routes can start from any intersection.

Figure H: A sample burrow of intersections and connecting bidirectional tunnel lanes

Each running route starts and ends at the same intersection, and each lane in that running

route can be travelled once only. The cameras are deployed on the lanes (e.g. between C and

D, etc.) and not at the intersections. The cost of deploying a camera depends on the length of

18

the lane on which it is placed (e.g. in Figure H, the length of lanes A-B, B-C and D-E are 8,

53 and 22 respectively). Thus, your task now can be summarized as to select a set of lanes

that minimizes the total cost of deployment of these motion-sensitive cameras while ensuring

that there is at least one camera along every possible running route or loop in the burrow

network. Write a program that computes the optimal placement of these cameras in the

connected burrows.

Input

The input consists of a line containing the number T of test cases, followed by T test cases, 0

< T < 1,001.

The first line of each dataset contains two positive integers, S and L, separated by a blank,

which represent the number of intersections and number of lanes, respectively. You may

assume that 0 < S < 10,001 and 0 < L < 100,001. Each of the S intersections is labeled from 1

to S. The following L lines of each dataset describe one lane per line. Each line consists of

three positive integers which are the labels of two different intersections followed by the

length of this lane. The length of each lane is between 1 and 5,000.

Output

For each case, output “Case #X: D M” (without quotes) in a line where X is the case number,

starting from 1, followed by a single space, the integer D is the minimal total cost of setting

up the chinchilla running and chasing monitoring system such that there is at least one

motion-sensitive camera along every possible route, and integer M is the maximum length of

the lane where a motion-sensitive camera is to be installed.

Sample Input Sample Output
1

5 8

1 2 8

1 5 70

1 4 63

2 3 53

2 5 54

3 4 10

3 5 12

4 5 22

Case #1: 52 22

19

I
BEST POSITION

Input Standard Input

Output Standard Output

Time Limit

10 seconds

Problem Description

Farmer John wants to build a new farm on a large field. The field is represented as a grid of

size R x C. Each cell in the field can be used to produce a type of food: either grains (G) or

livestock (L). Below is an example of a field of size R = 5, C = 8:

 12345678

1 GLGGLGLG

2 GGLGGLGL

3 GGLLLGGG

4 LLGLLGLG

5 LGGGLGLL

Farmer John already have a set of design blueprints of the farm he wants to build. Each

blueprint is represented as a grid of size H x W, where H <= R and W <= C. Each cell in the

blueprint denotes the type of food John wants to produce: either grains (G) or livestock (L).

For example, a blueprint of size H = 2, W = 3:

 123

1 GLL

2 LGG

Using this blueprint, Farmer John can build the actual farm on a certain position in the field.

The farm position is represented by the position of its top-left corner. Suppose the farm is

built at position (r, c) in the field. The farm must entirely built inside the field (i.e., r + H - 1 ≤

R and c + W - 1 ≤ C). If the type of food in the cell of the field at position (r + i, c + j)

matches the type of food in the cell of the blueprint at position (i+1, j+1) where 0 ≤ i < H, 0 ≤

j < W, then the food can be produced. Farmer John wants to pick the farm position in the

field such that the farm produces the most number of foods (grains + livestock). If there are

more than one possible position, he prefers the top-most position and if there are still more

than one possible position, he prefers the left-most position. From the given field and

blueprint examples above, the best position is to build the farm at position (1, 3), which is the

position of the top-left corner of the farm in the field. As shown in bold:

 12345678

1 GLGGLGLG

2 GGLGGLGL

3 GGLLLGGG

4 LLGLLGLG

5 LGGGLGLL

20

By building the farm at position (1, 3) in the field, Farmer John can produce 5 foods: 3 grains

and 2 livestock. That is, for the first row of the blueprint, 1 grain and 1 livestock can be

produced and for the second row of the blueprint, 1 livestock and 2 grains can be produced.

Note that building the farm at position (2, 5) and (3, 2) also produce the same number of

foods, however Farmer Johns prefer the top-most and then the left-most position. Placing the

farm at any other position in the field will produce less than 5 foods.

Input

There is only one field in the input. The first line contains two integers R and C where 0 < R,

C ≤ 500, followed by R lines each contains C characters describing the field. The next line

contains an integer B where 0 < B ≤ 5, which denotes the number of blueprints Farmer John

has, followed by B blueprints specifications. Each blueprint starts with a line containing two

integers H and W where 0 < H ≤ R and 0 < W ≤ C, followed by H lines each contains W

characters describing the blueprint.

Output

For each case, output “Case #X: Y” (without quotes) in a line where X is the case number,

starting from 1, followed by a single space, and Y is the four integers output separated by a

space between them. The first two integers denote the best position to build the farm. The

next two integers are the number of grains and livestock that can be produced.

Sample Input Sample Output
5 8

GLGGLGLG

GGLGGLGL

GGLLLGGG

LLGLLGLG

LGGGLGLL

3

2 3

GLL

LGG

3 1

L

G

G

1 4

GGLL

Case #1: 1 3 3 2

Case #2: 1 2 2 1

Case #3: 3 1 2 2

21

J
SPOKES WHEEL

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

Mr. Miyamoto is playing with a wheel. Each wheel can have many spokes.

A spoke is one of the rods radiating from the center of a wheel (the hub

where the axle connects), connecting the hub with the round traction

surface. The wheel has 32 spokes with random of 0 or 1 as the value/tag

for each spoke.

He has given a list of spokes, before and after its movement. His task is to calculate its

optimal movement, whether the spokes move (in rotation) to the left or right. The list of

spokes can be represented in a hexadecimal. For example: 800000001, means:

1000 0000 0000 0000 0000 0000 0000 0000 (list of spokes before its movement) and

0000 0000 0000 0000 0000 0000 0000 0001 (after its movement)

From this example, he found that there are two possible rotations: move to the left 1 (one)

time and move to the right 31 times. The optimal rotation is the minimal number to move (in

rotation), which is move to the left 1 (one) time.

Input

The first line of input gives the number of test cases, T (1 ≤ T ≤ 1000), followed by a line

which content of the N1 as a state before the spokes move and N2 as a state after the spokes

move. Whereas N1, N2 are 32-bits integer in hexadecimal representation (1..F)

Output

For each case, output in a line "Case #X: Y" (without quotes) where X is the case number

starting from 1, and Y is the minimum number of wheel’s spoke movements and followed by

the direction to the “Left” or “Right”. If the number of movements to the left or right is the

same, the direction will be written as “Any”. If N2 is not the final state of N1 then the output

will be written as “Not possible”.

22

Sample Input Sample Output
4

80000000 1

1 80000000

AAAAAAAA 55555555

1 7

Case #1: 1 Left

Case #2: 1 Right

Case #3: 1 Any

Case #4: Not possible

23

K
BALL

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

You are given some colored marbles arranged in a circle. The marbles can have three

different colors: red, white and green. The marbles changes their color in each second. The

new color of a marble depends on the marble right to it. The rules of changing color is as

follows:

 if the color of the marble is white then in the next second its color will be the one on

its right.

 otherwise, the marble does not change color if the color of the one of its right is white.

 otherwise, if the marble has the different color than the one of its right, it will become

white.

 otherwise, the marble will have the same color with its right. In this case, if it is red

then it will become green and if it is green it will become red.

You are given a string S and an integer N. Determine the state of the marbles after N seconds.

If we consider S as a character array and its length is L, then we have L marbles in the circle.

Marble (i+1) is in the right side of marble i. For marble (L-1), marble 0 is in its right.

Input

Input starts with T (T ≤ 20), the number of test cases. Each of the next T line contains S (1 ≤

|S| ≤ 20,000) and N (1 ≤ N ≤ 10^18) separated by a single space.

Output

For each case, output “Case #X: W R G” (without quotes) in a line where X is the case

number, starting from 1, followed by a single space, and W is the number of white marbles, R

is the number of red marbles and G is the number of green marbles for that particular case,

each separated by a single space.

24

Sample Input Sample Output
5

RRGWRGW 2

WRGWRGWRGWRG 4

WGRWRGRRWGRWRG 3

RGRGWRGRG 3

RGRGRGRGWWWWRR 5

Case #1: 3 1 3

Case #2: 4 4 4

Case #3: 10 1 3

Case #4: 5 2 2

Case #5: 8 2 4

25

L
IRRIGATION LINES

Input Standard Input

Output Standard Output

Time Limit

1 second

Problem Description

A plantation consists of several rectangular fields, and a field is further subdivided into

square zones. Under the multi-zone crop rotation, some zones are planted with crops, while

some other zones are left fallow during a season. The zones of a field are rotated in this

manner so that every few seasons, a zone would rest and be fallow. Crops of a season are

selected based on their type, form, shape, and sun or shade requirements.

An irrigation system has been installed for each field. The system is constructed in a manner

to simplify the operation and re-configuration of the system. The main water line runs

around the field, which is depicted by the dark solid lines enclosing the field in the figure

shown below. Dedicated control valves connect the mainline to the lateral (horizontal and

vertical) irrigation lines that control the water flow to each of the rows and columns of zones.

The valves are turned off if the irrigation line is not active. Only one lateral irrigation line is

required to water a planting zone. The emitters or the holes on the active irrigation lines are

closed over the zones that do not require to be watered. The layout of the planting field

dictates the way the irrigation system is re-configured at the beginning of every season by

turning off the valves of the inactive irrigation lines, and closing the unwanted emitters of the

active lines.

To economise the management effort, the system needs to

utilise a minimum number of lateral irrigation lines, i.e.,

lines that must be active. For example, the figure below

shows a field divided into 4 x 4 zones. There are four zones

that are planted with crops in the field marked by floral

symbols, i.e., row 1 column 3, row 2 columns 2 and 4, and

row 3 column 3. There are eight valves controlling the flow

of water through their corresponding irrigation lines on the

field. In the example, only the two lines whose valves have

been turned on need to be activated to irrigate the crops on

26

the planting zones. These active irrigation lines are outlined by solid lateral lines in the

figure. The inactive lines whose valves have been turned off are not drawn to avoid clustering

of the figure.

Write a program that reads layouts of planting fields and determines the minimum number of

lateral irrigation lines that must be activated in these fields.

Input

The first line contains an integer T (T ≤ 100) denoting the number of cases. Each case

describes a layout of a planting field, which starts on a new line with a pair of positive

integers M and N (1 ≤ M, N ≤ 100), indicating the dimension of the field, i.e., the number of

rows and columns of zones, respectively. The integers are separated by space. The next M

lines of each test case delineate the layout of the field containing either a 1 or a 0, where 1

indicates the zone is planted and a 0 if it is fallow.

Output

For each case, output “Case #X: Y” (without quotes) in a line where X is the case number,

starting from 1, followed by a single space, and Y is the minimum number of irrigation lines

that must be active.

Sample Input Sample Output
2

4 4

0010

0101

0010

0000

5 4

1001

0010

1100

1110

0101

Case #1: 2
Case #2: 4

--- end of the questions ---

