
Alberta Collegiate Programming
Contest

2017

Not the easiest ACPC, but hope you had fun!

Statistics

Problem Modan’s Wenli’s Actual

Anthony and Diablo 100% 100% 90%

Musical Scales 90% 60% 75%

Tetration 50% 5 teams 65%

Divide by 100... 70% 60% 60%

Quantum Superposition 10% 3 teams 10%

Concentration 40% 75% 5%

Lane Switching 15% 4 teams 1

Race Track 10% 1 team 0

Maximal Sequence < 2 teams 0 teams 0

Matchings < 2 teams 0 teams 0

Problem Difficulty

Anthony and Diablo 2.1

Musical Scales 2.0

Tetration 2.6

Divide by 100... 5.7

Quantum Superposition 8.7

Concentration 7.7

Lane Switching 8.9

Race Track 7.5

Maximal Sequence 9.3

Matchings 9.0

Solutions

Not going to go over details or take questions.
Come to the next CPC meeting!

 Anthony and Diablo ● Trivial implementation

● Author: Modan

Anthony and Diablo
Observe optimal shape is a circle.

Check max area created by fence is at least A,

maxA = (N*N)/(4.0*math.pi)

print("Diablo is happy!" if maxA >= A else "Need more materials!")

or required amount of fencing is at most N.

 // pi r r = a

 double r=sqrt(a/pi);

 // pi 2 r = c

 double c=pi*r*2;

 cout<<(c>n?"Need more materials!":"Diablo is happy!")<<endl;

 Musical Scales ● Implementation, brute force

● Author: Zachary Friggstad

Musical Scales
There are only 12 musical scales and input size is small; just brute force.

For every major, check if it is possible for the song.

To check if a note is in a major, use simple “distance” function

vector<int> p={0,2,4,5,7,9,11};

bool in(int note, int major){

 for(int i:p)

 if((major+i)%12==note)return 1;

 return 0;

}

 Tetration ● Math

● Author: Modan

Tetration
Come up with the following theorem (or just find pattern, sample cases are big hints!).

∞a = N iff aN = N, therefore a = N1/N.
Solution is easy if you noticed this, and much harder if you used other approaches.

print("%.6f"%(n**(1/n)))

Or use binary search, however, it’s not obvious how many iterations is good enough for

approximating infinite tetration. In Python, 20 iterations of binary search and 250,000

iterations of exponentiation is good enough for 6 digits of precision, and runs under a

second.

 Divide by 100... ● Implementation, Strings

● Author: Modan

Divide by 100...
Python division/Java BigInteger doesn’t work… Not enough precision/arithmetic is too slow.

Observe division by a “special” number can be treated as a string operation, which is much

more efficient than doing arithmetic on numbers up to 10^(10^6).

Insert decimal point in the middle or in front of N, depending on the length of N and M.

Watch out for edge cases, e.g. inserting leading zeroes, removing trailing zeroes, removing

the decimal point.

 Quantum
Superposition

● Dynamic programming

● Author: Wenli Looi

Quantum Superposition
Let f:V->{Z} be a function, f(v) is the set of distances to reach vertex v.

Observe the recurrence

f(v) = ∪ f(u)+w, where for all u,w, (u,v,w) is an edge.

And base case is f(root)={0}.

Naive brute force is too slow, use memorization/DP!

For each query q, check if there exists element e in graph 1’s set, such that the element

(q-e) exists in graph 2’s set. Print “Yes” if so, and “No” otherwise.

 Concentration ● Simulation, implementation

● Author: Modan

Concentration
Observe at any given time at most 1 pair of “similar” cards is known (due to the amazing

plays by Anthony and Matthew); memorize this pair.

Memorize all revealed card; this can be done with an array. Memorize each player’s

position in their “random” choice array. Memorize current player.

Simulate the game. If (known “similar” pair is not null), add points to the current player,

grant extra turn; reveal next “random” card chosen by the current player and switch

player otherwise.

Compare points when the game ends.

 Lane Switching
● Graph

● Author: Howard Cheng,

Brandon Fuller

Lane Switching
Construct weighted graph; the vertices are unoccupied spaces; an edge (x,y,w) exists iff

x and y are in adjacent lanes, and there are enough space to switch lanes from x to y, the

weight w is the safety factor of y.

Use modified Prim’s-like (or Dijkstra’s-like) traversal; the “weight” or “distance” of a

traversal is the current max edge weight/safety factor.

 Race Track ● Geometry

● Author: Modan

Race Track
Not difficult, lengthy implementation.

For each corner, slice the edges by the smoothing length, and create an arc object. Exact

implementation can vary quite heavily.

For each query, compute the min distance to all the sliced line segments; compute point

to line segment distance. Compute the min distance to all arcs; if the point is in the

angle of the arc, return the distance to the circle of the arc; return the min distance to

one of the endpoints of the arc otherwise.

Return the overall min distance.

 Maximal Sequence ● Segment tree

● Author: Zachary Friggstad

Maximal Sequence
Create a segment tree for the original main sequence that stores for various intervals [i, j)

a set of all notes in that range. The total space is O(n log n) as there are log n levels of the

tree. Using an unordered set, it takes about O(n log n) time to construct as well.

Now for each query (i, B), have a recursive function that given an interval [lo,hi) into the

original sequence will compute the longest sequence that can be played within the

interval [lo,hi) starting at max(i,lo). If the set of notes in the sequence [lo, hi) is a subset

of B, then just return hi-max(i,lo). This takes O(|B|) time using. Otherwise, you have to

do some recursive calls.

Each O(|B|) subset query will be done O(log n) times.

 Matchings ● Fast Fourier Transform

● Author: Kent Williams-King

Matchings
Naive brute force is too slow. Let N be the size of the floor, brute force runs in O(N^2),

i.e. 10^12 operations, which is too slow.

Use Fast Fourier Transform!

FFT multiplies two polynomials of size N in O(N log(N)) time.

Matchings

Consider:

(a1 + a2x + a3x
2 + a4x

3 + a5x
4 + a6x

5 + a7x
6 + a8x

7 + a9x
8)✕(b4 + b3x + b2x

3 +
b1x

4)

The coefficient of the x4
 term is: a1b1 + a2b2 + a4b3 + a5b4

The coefficient of the x8
 term is: a5b1 + a6b2 + a8b3 + a9b4

The coefficient of the x3
 term is: a1b2 + a3b3 + a4b4 (means nothing)

etc.

a1 a2 a3 b1 b2

a4 a5 a6 b3 b4

a7 a8 a9

Big thanks to everyone who helped working on
this contest! Including:

Zachary Friggstad, Coach of UofA
Howard Cheng, Coach of UofL
Brandon Fuller, UofL alumni

Wenli Looi, Kent Williams-King, UofC alumni

